choose your color

Category: Uncategorized

When Is the Best Time to Introduce CNC Automation?

The natural progression for keeping up with the increasingly speedy and digitally-oriented markets is automation, or rather CNC automation. Customers expect products faster than ever before, with unprecedented levels of quality and reliability. What’s more, the supply chain is rife with challenges, which means pushing up a production timeline is almost always beneficial — when it’s possible to do so.

However, implementing sophisticated CNC equipment and machines, to achieve automation, is not just expensive, it’s also time-consuming. You can’t just swap everything in one go and hope it works. Worse yet, when new equipment is implemented, trialing and configuration periods are absolutely necessary to ensure optimal output and performance. The question then becomes, what is the best time to introduce CNC automation into your existing operation?

Are you truly ready for automation?

Many fall into the trap of thinking that automation can be applied to any and every process. While technically true, those processes need to be well-grounded, steadily maintained, and appropriately designed. In other words, you need a full understanding of the average output, performance, and specifically, what should be automated. That takes research, time, and thorough testing.

With CNC automation, especially, you could be looking at inconsistent results if the system has not been properly vetted — you must consider product design, quality assurance, maintenance, and beyond. Moreover, employees must understand their roles, and receive the proper training wherever applicable.

It takes a considerable amount of buy-in, and if you’re not truly prepared to invest, you’re not likely to see significant results. So, take a moment to consider your operation, what processes you’d like automated, and whether or not you — and your team — are truly ready.

What tools will you need?

Converting to CNC automation, in full, is going to require new hardware, new software, and possibly even new peripherals — for example, you may have to modify your facility to meet the needs of your new equipment. There may be opportunities to utilize existing equipment by installing various devices and sensors on the legacy hardware, but that’s not always going to be the case.

It’s entirely possible to achieve world-class CNC machining and manufacturing operations without handling the tasks in-house (outsourcing) and without acquiring the equipment yourself, which is costly. You can put in orders for the components, parts, or pieces that you need to have created, and leave the logistics to an expert team. Some providers even run a two-shift operation to turn projects around much faster, as they have more time to work and respond to manufacturing matters. Whereas your team may not have the labor, supplies, or equipment to aptly finish the project.

It’s important then to consider whether or not you have the tools, and equipment, available to automate your operation. If you don’t, how long will it be until you can reasonably acquire the said equipment? Do you have the funds and resources? It may be more beneficial to partner up with a CNC machining provider who can handle the work in the interim, at the least, or who is willing to handle the work long-term.

Are you in control?

Before you can deploy advanced automation, you need to be in full control of your environment. What’s more, you need a great deal of data and information about the operation, your equipment, your performance, and beyond. Do you have the resources, for instance, to measure the conditions of your cutting tools before a project begins? Do you know if your CNC equipment can handle specific materials? Can you change out those tools or components if tolerances are not being met? Often, modern CNC machines are able to perform multiple actions. How easy is it to leverage their alternate uses, and can you automate the process to remove certain burdens?

These are merely a few questions that relate to a traditional CNC operation, but also, they’ll be relevant in an automated one. These tasks are still necessary, but the equipment and hardware at your disposal should help handle the work more efficiently, and more accurately. When CNC automation hardware is deployed you must retain that control, and ultimately, gain more through the insights gathered thanks to the newly data-oriented hardware. But most importantly, you should have the opportunity to make decisions, and react, in real-time.

Automate or hyper-automate?

Another element to consider is how much of your operation you’ll be automating and bringing online. Are there individual tasks, with a smaller scope, that would benefit? Instead, are you planning to hyper-automate, like 28% of the manufacturing industry?

Hyper-automation focuses on optimizing all stages of a process or operation, as opposed to a single aspect. It’s also a much more expansive overhaul and an incredible undertaking, even if you have processes that are already automated. The benefits, however, can be exponential and well worth the investment and include boons like higher production speed, greater precision, improved capacities, and much more.

It is possible to achieve hyper-automation by rolling out improvements at the same large scale, but with a slower timeline, as in rolling out processes one by one. There’s nothing wrong with starting small and working your way up.

CNC Data Transfer Methods That a CNC User Must Know

Computer Number Control or CNC machines allow users to create a part or equipment out of a block of metal or plastic by continuously removing pieces of metal in a pre-determined manner. It is also known as a subtractive manufacturing process. 

Gone are the days when a person oversaw and performed every task associated with manufacturing machine parts. With CNC machines, software that has already been programmed with the required design can govern the movement of the tools. The program can cover different types of machinery and can also cover a wide range of tools.

Data Transfer Methods That a CNC User Must Know

The data stored in the CNC machine gains significant importance as it is the data that lets users complete the project. If you repeatedly make the same design, storing the program in a safe external device becomes even more important.

Data transfer is a process that takes place regularly in the life of a CNC user. While a CNC user might employ various methods for data transfer, they can either be classified based on the type of data being transferred or the method of data transfer employed.

Methods Depending on the Data Being Transferred

A CNC machine uses programs that tell the machine where to use a tool, how to use and how far to drill, etc. All of this information is important and should be stored properly.

CNC System Data

Every CNC machine has data about its system functionalities. This data will change from one machine manufacturer to another significantly. There may even be small changes between the system data for machines made by the same manufacturer.

Certain parameters, such as backlash, pitch error compensation, etc., are machine-specific. Every CNC user must back up this data in external storage space. Doing so ensures that it is easier to get the CNC machine up and running in the unfortunate incident of a machine failure.  

Fixture Offsets

A CNC machine of any kind, be it a CNC turning center or a CNC lathe, needs to have well-defined zero assignment values. These values help the machine move the required parts to the appropriate position to chipping away from the raw block.

Every time a job is run on the CNC machine, it is important to use the same fixture offset values, especially if the same part is being manufactured repeatedly.

G10 commands are an excellent way to set the fixture offset values correctly before running the CNC program. These commands are typically present at the start of the CNC program. 

You can transfer the fixture offset settings into a CNC program file and run the file every time you initialize the machine.  

Tool Offsets

Tool offsets are also G10 commands similar to the fixture offsets. The tool offsets help the machine identify the center of the tool so that the machine runs along the intended programmed line.

The tool offsets depend on the length and the diameter of the tool. Therefore, if the tools are changed, the tool offsets need to be reset to match the new tools. 

Transferring the tool offset data from the machine is often done to confirm that all the offsets are set properly and that there aren’t any unwanted variations.

Modes Employed for Transfering the Data

Depending on the CNC machine and its features, there are various ways of transferring the data to and from the CNC machine. While punched tape and floppy disks used to be the go-to methods for data transfer, they are now replaced by standard V24, RS232, or RS485 serial interfaces.  

A wired connection to a storage device or another computer is also often used for data transfer. Newer CNC machines can also use a wireless connection to transfer data.

If the CNC machine has a small memory that is inadequate for storing the program, the program is stored in a computer connected to the CNC machine. The program is then transferred in smaller blocks to the CNC machine. This process is also known as Distributed Numeric Control.

Where does it come from

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Sed auctor nulla ante, nec ultrices justo convallis ac. Quisque dapibus dignissim quam. In ipsum ex, posuere vel magna sed, elementum pellentesque nisi. Nam eu metus suscipit, placerat nisl vel, condimentum dui. Quisque tristique lorem ligula, at ultricies nulla consequat a. Duis gravida augue id ligula facilisis tristique. Suspendisse nec metus blandit nisi eleifend aliquam nec et justo. In id ante vel nulla finibus lacinia. Quisque vel dignissim ex. Suspendisse sollicitudin lacus nec egestas volutpat. Sed nisi ligula, vehicula vel nunc in, aliquam dignissim felis. Fusce aliquet enim felis, laoreet tincidunt turpis tristique laoreet.