choose your color

Month: January 2024

Verisurf Unveils Integrated Sales Platform for CMMs

Verisurf Software Inc. has rolled out an innovative sales platform offering customers access to both new and pre-owned Coordinate Measuring Machines (CMMs) equipped with Verisurf software. All machines undergo calibration and certification processes and come bundled with the Verisurf CMM Programming and Inspection Suite software.

Terry Wear, Director of CMM Integration at Verisurf Software Inc., emphasizes the company’s commitment to tailoring measurement and inspection solutions to meet customer needs. He notes, “While our preference is to deliver new machines featuring the latest technology, in cases where budget constraints or specific applications necessitate pre-owned equipment, there is a wealth of high-quality CMMs available. Software plays a pivotal role in unlocking the full potential of any CMM.”

Whether new or pre-owned, all CMMs are compatible with Verisurf software. Verisurf distinguishes itself as the sole metrology software constructed on a comprehensive 3D CAD/CAM platform, complete with intelligent model-based definition (MBD). This approach ensures data integrity and allows users to seamlessly execute metrology workflows within a CAD environment, maintaining model-based digital continuity. Verisurf software supports a variety of CAD file formats, and the Verisurf Device Interface (VDI), featuring a virtual CMM display, interacts with and manages all programmable and portable CMMs for universal compatibility. The software’s modular design, user-friendly CMM programming, and integrated productivity tools empower users to swiftly formulate measurement routines with efficient and repeatable workflows, enhancing quality process control.

Exploring CNC Machining Surface Finishes: A Comprehensive Guide

CNC machining, a process utilizing computer-controlled machinery, is widely employed for cutting, shaping, and forming parts, serving various applications like 3D printing, mold making, and prototyping.

Understanding the capabilities of achieving different surface finishes is crucial for producing accurate CNC machine parts. Three primary types of surface finishes achievable with CNC machines are:

  1. Raised (aka “positive”)
  2. Flat or low relief (aka “negative”)
  3. Rough machined

Optimizing CNC Machining Surface Finish: Strategies for Success

  1. Select the Right Material and Design: Choosing an appropriate material significantly impacts surface finish. Materials like aluminum, with a high coefficient of friction, can pose challenges, while steel or plastic may offer smoother surfaces. Align material choice with design considerations for optimal results.
  2. Utilize Custom Finishes: Employing custom finishes, typically executed with a diamond abrasive wheel, can yield exceptionally smooth and shiny surfaces. This approach is ideal for applications demanding high-quality and durable components.
  3. Consider Your Application: Tailor the surface finish to the intended application. Industrial environments may necessitate more robust finishes compared to office settings. Understanding the application’s requirements ensures the right surface finish is achieved without unnecessary expenses.
  4. Choose the Right Cutting Tools: Ensure sharp and appropriately sized cutting tools for smooth finishes. Tool condition plays a crucial role, striking a balance between worn-out tools leading to poor-quality parts and overly sharp tools causing chipping.
  5. Explore Bead Blasting: Bead blasting, utilizing aluminum oxide particles propelled by compressed air, can remove material and contribute to a smooth surface finish. This technique creates friction between the abrasive particles and the workpiece, leading to material removal.
  6. Consider Ceramic Coating: Ceramic coating, a chemical process depositing a ceramic layer onto metal surfaces, serves to protect against corrosion and wear. Widely used in automotive and medical industries, ceramic coatings reduce friction and prevent galling between moving parts.
  7. Opt for Lower Spindle RPMs: Lower spindle RPMs can reduce chatter and vibration, contributing to a more consistent tool life and improved surface finish. However, this approach may extend the machining process due to fewer cuts per minute.

In Conclusion

Achieving optimal surface finishes in CNC machining involves a thoughtful selection of materials, designs, and finishing techniques. Whether opting for custom finishes, bead blasting, ceramic coatings, or other methods, aligning these strategies with the intended application ensures the production of high-quality CNC machined parts.